DR. KARL JORDAN'S EXPEDITION TO SOUTH-WEST AFRICA AND ANGOLA: SIPHONAPTERA.

By DR. KARL JORDAN, F.R.S., F.R.E.S., F.Z.S.

(With 8 text-figures.)

THE mammals obtained on the Expedition were mainly collected for the sake of their Ectoparasites, particularly fleas. As I found little time for trapping, especially in Angola, we did not get large numbers of fleas, there being hardly ever anything on the mammals brought in dead or alive by the natives. Since my return to Europe, Herr W. Hoesch, one of my companions in South-West, has sent me from that country two consignments of fleas which add materially to the collection. Some of the species we obtained are new, the most interesting new flea being a subspecies combining characters of Ctenocephalides felis felis and Ct . connatus.

In order to make the report on the fleas more useful, I hare included in it all the species known to me from South-West and Angola.

I. SOUTH-WEST AFRICA.

1. Echidnophaga gallinaceus Westw. 1875.

Sarcopsyllus gallinaceus Westwood, Ent. Mo. Mag., xi, p. 246 (1875) (Ceylon).
Abundant in the warm districts of the Eastern Hemisphere and in the Southern States of U.S.A. We have no records of it from Central and South America. A pest on fowl and other birds, but also common on mammals.

Maltahöhe, xii., on Aethomys namaquensis namuqucnsis.-Hoffnung, x., xi. 1933, on Geosciurus capensis and Cynictis penicillata bradfieldi.Omongongua, N.W. of Okahandja, iv. 1934, on Mungos mungo.-Otjosongombe, Waterberg, xi. 1933, and Ombijomatemba, near Otjivarongo, on Cynictis penicillata, Geosciurts capensis and Lepus capensis.——Otavifontein, xi. 1933, on Aethomys namaquensis namaquensis.
2. Echidnophaga larina, J. \& R. 1906.

Echidnophaga larina Jordan \& Rothschild, Thomps. Yates d Johnst. Lab. Rep., vii, i, p. 49, no. 3, pl. 1, fig. 12 ; pl. 2, fig. 18 ; pl. 3, fig. 25 (1906) (So. Afr., Abyss.. Somalild.).
The species was only known from the eastern side of the continent. Its true host appears to be the Aardvark (Orycteropus), but the flea is also found on Carnivora (which prey on the Aardvark or make use of its burrows).

Otjosongombe, xi.1933, on Hyaena brunnea, a small series, the proboscis embedded in the skin of the host.
3. Echidnophaga aethiops J. \& R. 1906.

Echidnophaga aethiops Jordan \& Rothschild, Thomps. Yates de Johnst. Lab. Rep., vii, i, p. 51, no. 4 (1906) (Namaqua).
Spitzkopje, on " Nycteris grandis," vii. 1912 (O. Püschel), 1 ㅇ._-KKlipfoutein, on Nycteris capensis, vi. 1903 (Capt. C. H. B. Grant), 1 ㅇ.-Occurs also on the east side of the continent.
4. Procaviopsylla angolensis Jord. 1925 (text-fig. 34).

Procariopsylla angolensis Jordan, Nov. Zool., xxxii, p. 102, no. 15, text-figs. 12-14 (1925) (Bengnela)
Naukluft Mts. 1,300-1,500 m., xii.1933, on Proeavin enpensis windhuhi, $2 \delta^{*} \delta^{1}, 3$ if. The specimens agree very well with the Angolan ones, except that in these 아 the head of the spermatheea is slightly larger and that there are fewer bristles on abdominal segment V11, 8 or 9 instead of 13 . As we have only one Angolan ρ, the range of variability in that country is not known.
5. Xenopsylla erilli Roths. 1904.

Pulex erilli Rothschild, Nor. Zool., xi, p. 610, no. 5. pl. 8, figs. 16. 17; pl. 9. fig. 22 (1922) (Deelfontein, Cape Prov.).
Omongongua, iv. 1934, on Crossarchus fasciatus, 1 ㅇ.-A flea of the Ground Squirrel, but frequently found on Carmivora.

fi. Xenopsylla brasiliensis Baker 1944.

P'ulex brasiliensis Baker, Proc. IT.S. Nat. Mus., xxvii, pp. 378, 379 (1904) (S. Paulo).
Okahandja and Waterberg, iii.-iv. 1934, wn Thullomys dumarensis, a series.
——Omongongua, on Procavia, one s.--Otavifontein, xi.1933, on Aethomys namaquensis namaquensis, Mastomys coucha and (1 O) Crocitura hirta, a series.-Ombijomatemba, on Acthomys chrysophilus imego, 1 ㅇ.
7. Xenopsylla scopulifer laths. 1905.

Pulex scopulifer Rothschild, Nor. Zool.. xii. p. 480, no. 2. pl. 13, fig. 5 (1905) (Zululand).
Ombijomatemba, on Acthomys chrysophilus imago, 1 o.--TThe species was hitherto known only from Zubuland and Portuguese East Afriea.
s. Xenopsylla nubicus Roths. $1!133$.

P'ultex nubirus Rothschild, Ent. 1lo. Mag. (2). xiv, p. S2. no. 2. pl. 2. figs. 10.16 (1903) (Sluendi).
Ombijomatemba, on Aethomy.s chrysophilus imago, 1 ․---The first recorl from a locality so far south, Nyasaland leing the most southern country from which we have specimens of this species.
9. Xenopsylla eridos liothe. 1904 (text-fig. 3i5).

P'ulex erilos liothschild, Nor. Zool., xi, p. 611, no. 6, pl. 8, fig, 21 : ph. 9, fir. 2:I'(190-1) (Deelfontein).
Ombijomatemba, on Aethomys shrysophilus imuyo.-Otjosongombe, ix. 1933, on 1 Iastomys couche bradficldi and Cryptomysdamarensis lugardi, a series.

In the N. C. Rothsehild collection only from various places in Cape Provinee. The record from Zululand in I'erh. III. Intern. Ent. Kongress, p. 616 (1ti26) is erroneous; the specimen belongs to the next species.

10. Xenopsylla piriei Ingram 192s (1ext-fig. 36).

Xenopsylla pivici Ingram, Bull. Ent. Res.. 18, p. 371, text-figs. 1, 2 (192s) (Transvaal : ('ape Prov.).
Hoffnung, x. 1933, on Desmorlillus curiculuris, a small series.
The $0^{\circ} 0^{\circ}$ of this species and X. eridos are easily distinguished from one another by the difference in the tendons of the penis: in \mathcal{X}. erilos the tendons make only half a convolution, whilst in \boldsymbol{X}. piriei they make one and a half convolutions, as pointed out by Dr. Ingram. In the of there is nu such conspicuous
difference, but the specimens of the two species from South-West can be separated by the spermatheca, the duct of the bursa copulatrix and the selerite at the base of this duct. As illustrated by text-figs. 35 and 36 , taken from South-Western

specimens, the base of the tail of the spermatheca is somewhat broader in \mathbf{X}. tridos than in X. piriei. Moreover, the duct of the bursa copulatrix is shorter in X. eridos and the sclerite placed at its base also slightly shorter. However, these distinctions are less precise in the long series of 와 we have from South Africa.
11. Ctenocephalides connatus Jord. 1925.

Ctenocephalus connatus Jordan. Nov. Zool., xxxii, p. 98, no. 6, text-fig. 5 (1925) (So. Afr.; Tang. Terr.).
Ombijomatemba, on Geosciurus capensis, a serics.
Like the preceding species, Ct. connatus was only known from the eastern side of the continent. In all the South-Western specimens of both sexes the head is very strongly rounded, contrasting very much in shape with the head of the subspecies of Ct. felis here following.

12. Ctenocephalides felis damarensis subsp. nov.

ठ̋ㅇ․ Frons as strongly slanting forward and its oral angle as sharp as in Ci. felis felis Bouché 1935. In ô foretarsal segment V with 5 or 6 stont short ventral bristles at and near apex as in Ct. connatus δ. In q abdominal sternites III to VI with 2 bristles each side, VII with 2 or 3 . Frons in some $\widehat{\hat{x}} \mathrm{o}^{\hat{2}}$ slightly shorter than in others.

Omongongua, near Okahandja, iii. 1934, on Procavia capensis windhuki.-_ Otjosongombe, xi.1933, on Myonax cauii bradfieldi.-Waterberg, v.1934, on Lepus crassicaudatus and Ictonyx striata.—Ombijomatemba, near Otjivarongo, on Cynictis penicillata and Lepus capensis.-Gobabis, on Genetta felina pulchra.

Evidently common. Nearly all the specimens were received from Herr W. Hoesch, who remarks on the abundance of this flea on the veranda of his house at Omongongua. He says that the flea probably was brought in by the dog and was breeding so profusely that one's legs got covered with fleas in crossing the veranda.

The specimens look so mmeh like European cat-fleas that I determined them as such before any had been cleared and mounted. The introduced European
cat which one finds on the farms, sometimes in numbers, would have explained the occurrence of the European cat-flca. The $\circ \rho$ of Ct. felis damarensis do not present any differences from that sex of Ct . felis felis and from extreme narrowheaded Ct. felis strongylus Jord. 1925; whilst all the $\widehat{0}{ }^{\hat{0}}$, some 71. possess on protarsal segment V a eluster of spiniforms at apex as in Ct. connatus. In both sexes the proboscis is as short as in Ct . felis felis, i.e. shorter than in Ct . connatus. As Ct. connatus occurs in Sonth-West, whereas Ct. felis strongylus was not obtained, we conclude that the flea in question is the Sonth-West African representative of Ct . felis.

The presence of ventral spiniforms on the end-scgment of the foretarsus of the ot is of some interest. The fifth segment generally bears in fleas some minute hairs on the ventral surface, in many cases from near the base to the apex, and occasionally these hairs develop into short spinforms, as for instance in Dasypsyllus lasius Roths. 1909, from Argentina. One, two or three apical ones are always a little enlarged, one being usually longish and more like a stiff hair, and the others shorter and spiniform. In Ct.f.damarensis ô segment V of mid-and hindtarsus bears 2 such spiniforms, very occasionally 3 in one tarsus, whilst in the foretarsus, in addition to these, 3 or 4 others have become spiniform. If there are only 5 spiniforms on the foretarsus, there is in front of the cluster one small hair larger than the small hairs, and it is this hair which has developed in other specimens into a slender and short spiniform. It is, further, interesting to note that the cluster of spiniforms of $C t$. connutus and $C t$. f. demarensis oceurs again in Ct. arabicus Jord. 1925, from Arabia, but not in the species of Ctenocephatides found only in Kenya, nor in any of the related genera. There must be some reason for the acquisition of the cluster of spiniforms-it can hardly be retention-in the two widely separated districts. The cause of the development of the cluster may lie conceated in the similarity of environment in these dry countries. I dn not wish to imply, however, that a dry climate directly produces spines in animals as it produces thoms and spines in plants. The eluster is eonfined to the j, and o-characters mostly have the function of bringing the sexes together or facilitating mating. We may, therefore, conclude that the cluster comes into play when the \hat{o} is underneath the \circ; but I camot guess at its special function.

A further point of interest is the difference in the shape of the head ohtaining in the various species and subspecies of rtenocephalides. The short heal with the strongly romed frons may be taken as ancestral, from which the long-fronted head of Cl. frlis is derived. The 4 geographical races of C . felis show all the gradations from at strongly rounded primitive frons to a strongly clongated younger firons:
(a) In Tropieal Afriea, Ct. felis strongylus, the frons varies from lecing as round and short as in Cte commutus to being nearly as long and pointed as in Ct. felis: felis.
(b) In South-Whest AFricis, ('t. frlis Iftmurensis, the froms is strongly pointed, sometimes in the ; with a rery slight inclination towarels romm. headerluess.
(c) In the Nile comentries and the lalacaret in Region, Cl. folie. felis, the froms is always long ame pointed.

13. Listropsylla prominens Jord. 1930.

Listropsylla prominens Jordan. Nov. Zool., xaxri, p. 133, no. 4, text-figs. 3, \& (1930) (Zululand).
Gobabis, on Aethomys chrysophilus, x. 1925 (Dr. Ingram), 1 ¢.-The genus is known from South and East Africa, Uganda and the Ruwenzori. Gobabis is so far the most western locality of its range.

Oxyparius gen. nov.
Similar to Ischnopsyllus Westw. 1840 and Arueopsyllt Jord. \& Roths. 1921, differing from both in the following combination of characters:

The dorsal incrassations so conspichous in Arueopsylle on the thoracic and abdominal tergites absent or at most feehly indieated. Bristles of the Ischno-psyllus-type, not spiniform as many are in Araeopsylla. Genal proeess as strongly ehitinized as in Arceopsylla, but gradually narowed to a point, its upper margin straight or nearly and the tip sharp. Metepimerum not extending so far forsad as in Araeopsylla, the abdominal tergite 1 being broader than in that gemus, agreeing with Ischnopsyllus in width. Basal abrominal sternite with one or more lateral bristles anteriorly above middle, such bristles unt occurring in any other bat-flea (apart from very minute hairs at the extreme basal margin). Segment V of all tarsi with four lateral pairs of plantar bristles and one ventral pair, the latter plaeed nearly in between the second pair, which is mmsnal.Genotype: a species here identified as Ischopsyllus isomalus. Waterst. 1915.
14. Oxyparius isomalus Waterst. 1!115 (text-fig. 37).

Ischnopsyllus isomalus Waterston, Rec. Albmny Mus.. III, 2. 1. 109, text-figs. 4, 5 (1915) (Pretoria, possibly off Miniopterus, one f).
Araeopsylla isomalus Haterst., Jord. \& Roths., Echoparasites. I, p. 146 (1921).
Klein Windhoek, x.t933, on Miniopteris matalensis smitiunus, 1 ob.
Described from a single Pretoria \circ in the Albany Museum at Grahamstown. We have a of from the same cave where the of was obtained, the bat being determined as Miniopteris matalensis. The ofrom South-West agrees with the Pretoria of apart from some differences in details, which I consider to be distinctions obtaining between individuals. Both ơo evidently belong to the stme species as the q described by Waterston, although they do not quite agree with the description. Waterston says of tarsal segment V that it bears 4 stout marginal bristles, the first two longer than the second pair, 1 stont ventral bristle and $7-8$ dorsal. According to this description the ventral pair of 1 ur 20 of is represented in the ρ by a single bristle.

Spines in the combs of the South-West of: $23,19,15,17,12,8$.
Modified Segments.-Tergite VIll large, romnded posteriorly, with 9 or 10 bristles on upper half of side, the largest of them close to margin; stemite VIHI triangular (in lateral aspeet), with the apex roumded and membranons, before apex 11 or 12 slender bristles. Clasper irregularly elliptical, dorsally somewhat more strongly rounded than ventrally, at apex 2 long bristles, above them the margin of elasper straight and oblique to angle of F , where there is a minute marginal projection and a minute hair; manubrium M very strongly oblique, the bay between it and tergite IX being very shallow. Sclerite F twice as long as broad in middle, ventrally and apically strongly rounded, anterior (= dorsal) margin straight, angle formed with apical margin distinct but obtuse, 2 slender
subapical bristles above middle of posterior side (=ventral), about as long as F is broad, and a few minute bristles. Vertical arm of LI st. a short and narrow process ; ventral arm in three sections: basal section subrectangular, about onefourth longer than broad, ventrally covered with minute hairs; middle section

mueh narrower, ventrally about as long as proximal section; apical section elongate reniform, incurved on proximal side ancl evenly rommed on posterior side, bearing a few slender bristles, some of them in a row in upper half and 2 each side submarginal in lower half; the apical seetion measured vertically about half the length of the total ventral arm. Apical ammature of penis with a long hook each side (Dar.).

11. ANGOIA.

1. Tunga penetrans 1.. 175 s .

Common at the const as well as in the interime
2. Echidnophaga gallinaceus Westw. 185.

Cf. anten, p. se.

B. Pariodontis riggenbachi linths, $1!1 \% 4$.

4. Procaviopsylla angolensis Jord. 1925.

CY. antea, p. 83.
 from Messrs, O. E. Janson \& Sons, no further material has come to hand.

In the Key given in 1926 (Verh. HII. Intern. Entom.-Kongress, p. 605) there is a penslip: line 9 from above, whieh refers to P. divergens, should read "proboscis reaching well beyond apex of palpus."
5. Procaviopsylla spinifex sp. nov. (text-fig. 38).

In 1926 , l.c. p. 604, I gave an amplified diagnosis of Procariopsylla in which I stated that the bristle in front of the eye was small or absent. The present new species refutes that statement, which has to be deleted.
δ^{7} ㅇ. Very close to the preeeding P. angolensis, but differs from that species and all the others of the genus in the bristle in front of the eye being very stout,

as are also the larger kind of bristles on head and thorax. Abelominal tergites II to VI with a row of 8 iristles in P. angolensis (on the two sides together) and a row of 10 in P. spinifex. On inner surfaec of hindfemur a lateral row of 5 or ; bristles in P. angolensis and 3 or 4 in P. spinifer. Hid- and hindtibiae as in P. angolensis with 8 dorsal notches. Stigma of segment VIH somewhat broader, particularly in \circ. Processes P^{1} and $P^{\prime}=$ of elasper longer than in P. angolensis.

Quirimbo, v. 1934, on l'rocamin bocrgei, a small series.
6. Xenopsylla brasiliensis baker 1904.

Cf. antea, p. 8.3.
Mt. Hoco, iii. 1934, on Rullus rallus, a series.-Solo R., cast of Catengue, iii. 1934, in nest of Otomys, a series.-The commonest species of Xenopsylle in Angola and the Congo. An African species now of wide distribution, accidentally. described first from Brazil.
7. Xenopsylla versuta Jord. 1925.

Xenopsylla rersuta Jordan, Nov. Zool., xxxii, p. 100, no. 10, text-fig. 8 (1925) (Benguela).
Benguela, i. 1906 (Ansorge), on Funisciurts, a small series of both sexes.-_ Occurs also in Tanganyika Territory and Kenya.

The of is easily recognized by the genitalia, the cnd-tube of the penis-sheath bearing a long tooth directed frontad: the lamina of the penis being apically rounded, not turned up into a point, and sternite IX dorsally membranous (transparent) and gradually curved upwards at the end. The o, however, closely resembles that sex of \boldsymbol{X}. cheopis and requires close scrutiny; it hears fewer bristles on the side of tergite VIII, the spermatheca is a little smaller, and the duct of the bursa copulatrix less chitinized.
8. Xenopsylla cheopis Roths. 1903.

Pulex cheopis Rothschild, Ent. Mo. Mag. (2), xiv, p. 85, no. 5. pl. i, figs. 3.9; pl. ii, figs. 12, 19 (190:3) (Shendi, Sudan).
Benguela, v.1!04, on Rathus rultus (Ansorge), 1 f.- An Indo-African species now occurring in most warm countrics, oceasionatly in European harbours.

9. Rooseveltiella georychi Fox 1914.

Roosereltiella georychi Fox, IIygienic Labor, Bull. 97, p. 7, pl. i, figs. 1 . 6 (1904) (34) miles inland from Renguela).
Cuito Estate and M1. Moco, iii. 1934, on Cryptomys bocngei and aceidentally on Rultus ruthus, a small scries.

10. Ctenocephalides felis strongylus Jord. 1925.

Ctenorephalus felis strongylus Jorvan, Sor: Zool., xxxii, p. 9s, no. 7 (1025) (Wi'st. East and South Africa).
 redustus, 1 q.-- Without a it is not possible to say whether the oo belong to Ct. f. strongylus on a race of Cl. commatus. Cf. antor, p. 84.

Libyastus gem, nov.

The squirel fleas from tropical Africa described as species of C'eratophyllas. are all nearly related to each other and form a special group well soparated morphologically from the Pabatare ic, Oriental and Ameriean squirel Ileas. 'The new genus I proprose for their reecption is best phaced near Tumopsopllu Wagner 1927.
 himdeosa on inmer side with margimal bristles omly. On froms an amterion row

panied by a small one, the median bristle often reduced or absent, very rarely a bristle near base of antennal groove. Bristles of segment II of antenna all short in δ, one reaching to middle of club in q; club of q exceptionally long, twice as long as broad, not rounded in middle. Hindtibia with 8 dorsal notches. First pair of plantar bristles of tarsal segment V lateral, but distinctly bent ventrad-apicad.
6. With 1 or 2 antepygidial bristles, the upper one the shorter. Tergite VIIl withont dorsal spiculose area on inside. Stemite VII reduced to a membrane. Posterior portion of tergite 1 X nearly completely separated from 1 X , forming an intercalar sclerite (as in many ot her fleas). Clasper partially separated from manubrium and dorsal portion of $I X$; no prominent process P.

ㅇ. With 3 antepygidial bristles. Stylet with 1 lateral bristle. Basa, abdominal sternite, at least on one side, with 1 or more lateral bristles (often present also in $\hat{0})$. Anal sternite with numerous lateral and ventral bristles none of which are curved and spiniform, 2 each side very long, one apical, the wher subapical. Anal tergite each side with one very long bristle, which is longer and thicker than the apical one of stylet. Orifice of spermatheca on a prominent cone, which is curved downward in some species; tail without appendix-Genotype: L. infestus Roths. 1918 (as Ceratophyllus).

Key to the Speches

A. Median bristle of oeciput mueh smaller than rentral posterior one. Clasper of on posterior side with sims, process P above sinus somewhat curved distad. In q snont of spermatheca not directed downwards.

1. L. infestus Roths t908-_Basal abdominal sternite with numerons lateral bristles. Sclerite F of $\hat{\text { ot hroatish, curverl frontad at apex, }}$ rounded on posterior sirle. Sternite VIl of of with more than 30 bristles on the two sides together. L. infestus infostus from Kenya and L. infestus durutus Jord. 1931 from 'Tanganyika 'Territory.
2. L. piger Jord. 1925.-Basal abdominat sternite with few lateral bristles. Sclerite F of of narrow, straight. Sternite VII of q with 14 bristles. Uganda.
B. Median oceipital bristle about as thick as posterion went oul one, but nsmally shorter. Clasper of $\hat{0}$ without sims on posterime side. In q snout of spermathera directed obtiquely downwards.
3. L. consobrinus Jord. 1925,-COnty the of known. Stemite VII with small narrow simus and about 20 to 22 bristles on the t wo sides toget her. Calmom and Nigeria.
4. I. stratiotes Roths. 1005-- Guly the of hown ; possibly the of of the preceding or the following species. Dorsal side of clasper very feebly incurved and distally very slightly convex, with 2 long bristles on posterior side. Spanish Gaboon.
5. L. motabilis Jord t!25.-Gnly the f linown. Sternite VII strongly narrowed, apex obliquely truncate, very feetsy incurved, upper angle strongly rounted, projecting farther distad then ventral angle: with 35 Iristles. Caboon.
6. Sp. uov.-- of : dorsal side of ehasper incurved and distally rather strongly empex ; one acetabular hristle. \&: stemite VII, distally much broader than in L. mombilis, trumeate, with 25 or fewer bristles. Angola.
7. Libyastus vates sp. nov. (text-figs. 39, 41).
8. Frons witly a row of 3 long bristles some distance from eye, middle one smaller than the others, farther forward 2 to 4 mueh smaller bristles and farther up another bristle elose to antennal groove. On occipnt a longstrong bristleabove middle of antennal groove, and another at posterior vent ral angle; besides this latter one, the subapical row contains each side only 3 rather short and slender bristles, the interspace between the long bristle and the nearest short one being large. Eye somewhat larger in of than in $\hat{0}$, longer than lwoad, the longer diameter

equalling in of the distame from the upger large eyebmistre denal proeess broad, ifpex momded.
 bristles and a comb of en spines. On mesomotmm in mif of 10 us 11 brisiles, in front of this row amother wh small bristles, besidess some additional dusal hristles, there being a latge bate lateral area. On metametmon the same mamber of lost les.

Spines on ablominal brgites: in ; 12.11 f. $1112,1 \mathrm{~V}_{2} 21$: in f $12,111,1112,1 V^{2} 2,10$, the 2 on and side ol 11 chase logether. Bristles an

Posterimy near inex of himentil $\ddot{\partial}$ bisistles. Hindfenmer with ome lateral
bristle on outside and 1 or 2 on inside. On outside of hindtibia a row of 7 or 8 dorso-lateral bristles. Measurements of tarsi: midtarsus, in $\mathrm{J}^{2} 20,18,12,8$, 16 ; in ㅇ 21, 19, 13, 8, 16 (Dala Tando specimen) and 23, 19, 13, 9, 17.—— Hindtarsus, in 0 5 $54,32,20,11,17$; in $\circ \frac{9}{5} 5,33,21,11,18$ (Dala Tando) and $58,34,22,12,19$. Longest bristle of hindtarsal segment II reaching to two-thirds of 111 .

Modified Segments.- ${ }^{*}$: VIII t. large as in the other species of the genus, with 6 lateral bristles, of which 1 is subventral, and 5 long and 8 smaller marginał and submarginal ones : apieal margin angulate and projecting below last bristle. Clasper (text-fig. 39 Cl.) dorsally evenly incurved and then strongly convex, this

portion corresponding to process P of other fleas ; rentrally the clasper somewhat unevenly convex ; one acetabular loristle, placed above midlle. Mambrium M somewhat shorter than in L. strutiotes, apically distinctly rounded-widened. Sclerite F long and narmow, of nearly even width, hut apically gradually narrowing to an oltuse point, upper half feebly concave on frontal side and convex on posterior side, 4 bristles at posterior margin. Apex of vertieal arm of IX st. on frontal side with a round projection which is on a level with lower margin of manubrium M, posterinr side also convex at the same level, apical nose long and narrow. Alical lobe of ventral arm of 1 N st. long. conical, with the tip rounded. Sentral sclerite of paramere, covered hy the apieal lobe of 1 X . st., rounded dorsally, its ventral apical angle pointed and probluced downward.
f. VLIst. truncate (text-fig. 40), nearly as in L. motabilis, but the apex broader and the eomuled npper ingle not projeeting beyond the ventral angle : with 20 to 2.5 hristles, in L. motabitis more than 30 , 04 VIll t., from stigma down, $!$ bristles in bala Tando \circ and 16 in the other, on inner surface $: z$ in the former and 4 in the latter. Bristles of anal sternite much more numernis than in L. motubilis, more than 30 each side, some of the ventral ones thieker in the

Congulu specimen then in the one from Dala Tando. Stylet $2 \frac{1}{2}$ times as long as broad, that of L. notulitis being one-third longer than in the new species. Spermatheea as in L. notabilis.

Length (specimens somewhat extended) : of $3 \cdot 1 \mathrm{~mm}$., o $3 \cdot 3 \mathrm{~mm}$.; hindfemur : $0^{1} 0.53 \mathrm{~mm}$. . $\uparrow 0.56 \mathrm{~mm}$.

Congulu, Amboim distriet, on Fumisciums congicus congicus, v.1934, one pair.——Dala Tando, ix. 1908 (Ansorge), on Funisciurus, 1 ㅇ.

The two specimens from Congulu were found on the same individual of the host.
12. Stivalius afer Roths. 1908.

Pygiopsylla afer Rothschild, Proc. Zool. Soc. Lond.., p. 618, no. 1, pl. 29, figs. 7, 8 (1908) (Benguela).
Benguela, 200 miles intand (Dr. F. C. Wellman), 1 'q, no host mentioned.Dala Tando, xii. 1901 (Ansorge), on Arvicanthis rufinus, 2 pairs.

No further Angolan material has come to hand.
13. Ctenophthalmus ansorgei ansorgei Roths. 1907 (text-fig. 41). Ctenophthalmus ansorgei Rothschild, Nov. Zool., xiv, p. 330, no. 2, text-fig. 4 (1907) (Bihé).

Bihé (= Silva Porto), on Cryptomys bocagei, xi. 1904 (Ansorge), 1 oै, 4 ¢q. Also Dilolo, Congo Belge (Dr. Richard).

Although the of has several times been mentioned in comparison with other

species and with Ct. a. colangonus Jord. 1936, the genital armature has not yet been figured. We give here a sketch of the clasper and its appendages.
14. Ctenophthalmus atomus J. \& R. 1913.

Ctenophthalmus atomus Jordan \& Rothschild, Non: Zool., xx. p. 551, no. 25, text-fig. 22 (1913) (Ndala Tando) ; Jord., ibid. xxxviii, p. 295, text-fig. 53 (1936) (Congo Belge).
Dala Tando (= Ndala Tando), on Arvicanthis rufinus, xii. 1908 (Ansorge), 1 f.-No further specimens from Angola have come to hand; but Dr. Richard collected $2 \delta^{\top} \mathrm{o}^{2}, 1$ q off Pelomys frater at Dilolo, Congo Belge, close to the Angolan frontier.
15. Dinopsyllus horridus J. \& R. 1913.

Dinopsyllus horridus Jordan \& Rothschild, Nov. Zool., xx. p. 576, no. 39, text-fig. 41 (1913) (Pedreira).
Pedreira, Bihé, on Pelomys campanae, xi. 1004 (Ansorge), 4 ôô, 1 q.——We have received no other Angolan specimens.
16. Dinopsyllus lypusus J. \& R. 1913.

Dinopsyllus lypusus Jordan \& Rothschild, 1.c., p. 570, no. 34, text-figs. 36, 37 (1913) (Kenya and Uganda).
Mt. Moco, Luimbate, iii. 1934, on Myomys colonus angolensis, 1 q.
I obtained only this single f. It is a small specimen, length (somewhat extended in mounting) 2.4 mm ., hindfemur 0.48 mm . on abdominal tergites II to V altogether 15 marginal teeth. There is a possibility that the specimen is a q of D. apistus J. \& P. 1913. L. lypusus is common in East Africa and extends northward to Darfur ; it appears also to be abunclant in the Katanga district of the Congo Belge.

The distinctness of D. lypusus from D. ellobius Roths. 1904 is open to doubt. Extreme specimens are easily distinguished by the difference in the length of the pronotum, in D. ellobius the pronotum being but little longer from the comb forward than the dorsal spines of the comb, whereas in D. lypusus the pronotum is twice the length of the comb or nearly ; in the δ of D. ellobius, the frons is shorter and the last two long ventral bristles of VIII st. are close together. However, many South African specimens take an intermediate position.

17. Lagaropsylla incerta Roths. 1900.

Ceratopsylla incertu Rothschild, Entom. Rec., xii, p. 37. pl. 2, figs. 2, 5, 6 (1900) (Madagascar and Sierra Leone).
Congulu, on Chaerephon limbatum, iv. 34, a long series. _The bat was very plentiful under the roof of the house in which we had our quarters : we caught them with a butterfly-net, and alnost every specimen had some fleas. I found nothing on the specimens of this bat and the others brought in by the natives.

